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Abstract: In this paper, based on a new multiplication of fractional analytic functions, we use some methods to find 

a special fractional integral. In fact, our result is a generalization of ordinary calculus result.   
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I.   INTRODUCTION 

Fractional calculus is the theory of derivative and integral of non-integer order, which can be traced back to Leibniz, 

Liouville, Grunwald, Letnikov and Riemann. Fractional calculus has been attracting the attention of scientists and engineers 

from long time ago, and has been widely used in physics, engineering, biology, economics and other fields [1-15]. The 

definition of fractional derivative is not unique. The commonly used definitions include Riemann-Liouville (R-L) fractional 

derivative, Caputo fractional derivative, Grunwald-Letnikov (G-L) fractional derivative, and Jumarie’s modified R-L 

fractional derivative [16-19]. Since Jumarie type of R-L fractional derivative helps to avoid non-zero fractional derivative 

of constant function, it is easier to use this definition to connect fractional calculus with ordinary calculus. 

In this paper, based on a new multiplication of fractional analytic functions, we use some techniques to find the following 

special integral: 

                                                                                 ( 𝐼0 𝑥
𝛼) [[(

1

Γ(𝛼+1)
𝑥𝛼)]

⨂𝛼 (
1

Γ(𝛼+1)
𝑥𝛼)

],     

where 0 < 𝛼 ≤ 1. Moreover, our result is a generalization of classical calculus result.   

II.   PRELIMINARIES 

At first, we introduce the fractional calculus used in this paper. 

Definition 2.1 ([20]): Let 0 < 𝛼 ≤ 1, and 𝑥0 be a real number. The Jumarie type of Riemann-Liouville (R-L) 𝛼-fractional 

derivative is defined by 

                                                                          ( 𝐷𝑥0 𝑥
𝛼)[𝑓(𝑥)] =

1

Γ(1−𝛼)

𝑑

𝑑𝑥
∫

𝑓(𝑡)−𝑓(𝑥0)

(𝑥−𝑡)𝛼 𝑑𝑡
𝑥

𝑥0
 .                                                      (1) 

And the Jumarie type of Riemann-Liouville 𝛼-fractional integral is defined by 

                                                                           ( 𝐼𝑥0 𝑥
𝛼)[𝑓(𝑥)] =

1

Γ(𝛼)
∫

𝑓(𝑡)

(𝑥−𝑡)1−𝛼 𝑑𝑡
𝑥

𝑥0
 ,                                                                (2) 

where Γ( ) is the gamma function. 

Next, we introduce the definition of fractional analytic function. 

Definition 2.2 ([21]): If 𝑥, 𝑥0, and 𝑎𝑛 are real numbers for all 𝑛, 𝑥0 ∈ (𝑎, 𝑏), and 0 < 𝛼 ≤ 1. If the function 𝑓𝛼: [𝑎, 𝑏] → 𝑅 

can be expressed as an 𝛼-fractional power series, i.e., 𝑓𝛼(𝑥𝛼) = ∑
𝑎𝑛

Γ(𝑛𝛼+1)
(𝑥 − 𝑥0)𝑛𝛼∞

𝑛=0  on some open interval containing 

𝑥0, then we say that 𝑓𝛼(𝑥𝛼) is 𝛼-fractional analytic at 𝑥0. Furthermore, if 𝑓𝛼: [𝑎, 𝑏] → 𝑅 is continuous on closed interval 

[𝑎, 𝑏] and it is 𝛼-fractional analytic at every point in open interval (𝑎, 𝑏), then 𝑓𝛼 is called an 𝛼-fractional analytic function 

on [𝑎, 𝑏]. 
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In the following, a new multiplication of fractional analytic functions is introduced. 

Definition 2.3 ([22]): Let 0 < 𝛼 ≤ 1 , and 𝑥0  be a real number. If 𝑓𝛼(𝑥𝛼)  and  𝑔𝛼(𝑥𝛼)  are two 𝛼 -fractional analytic 

functions defined on an interval containing  𝑥0 , 

                                                                                   𝑓𝛼(𝑥𝛼) = ∑
𝑎𝑛

Γ(𝑛𝛼+1)
(𝑥 − 𝑥0)𝑛𝛼∞

𝑛=0 ,                                                       (3) 

                                                                                  𝑔𝛼(𝑥𝛼) = ∑
𝑏𝑛

Γ(𝑛𝛼+1)
(𝑥 − 𝑥0)𝑛𝛼∞

𝑛=0  .                                                       (4) 

Then we define 

                                                                         𝑓𝛼(𝑥𝛼)⨂𝛼 𝑔𝛼(𝑥𝛼)  

                                                                   = ∑
𝑎𝑛

Γ(𝑛𝛼+1)
(𝑥 − 𝑥0)𝑛𝛼∞

𝑛=0 ⨂𝛼 ∑
𝑏𝑛

Γ(𝑛𝛼+1)
(𝑥 − 𝑥0)𝑛𝛼∞

𝑛=0   

                                                                   = ∑
1

Γ(𝑛𝛼+1)
(∑ (

𝑛
𝑚

) 𝑎𝑛−𝑚𝑏𝑚
𝑛
𝑚=0 )∞

𝑛=0 (𝑥 − 𝑥0)𝑛𝛼 .                                              (5) 

Equivalently, 

                                                       𝑓𝛼(𝑥𝛼)⨂𝛼 𝑔𝛼(𝑥𝛼) 

                                                 = ∑
𝑎𝑛

𝑛!
(

1

Γ(𝛼+1)
(𝑥 − 𝑥0)𝛼)

⨂𝛼 𝑛
∞
𝑛=0 ⨂𝛼 ∑

𝑏𝑛

𝑛!
(

1

Γ(𝛼+1)
(𝑥 − 𝑥0)𝛼)

⨂𝛼 𝑛
∞
𝑛=0   

                                                 = ∑
1

𝑛!
(∑ (

𝑛
𝑚

) 𝑎𝑛−𝑚𝑏𝑚
𝑛
𝑚=0 )∞

𝑛=0 (
1

Γ(𝛼+1)
(𝑥 − 𝑥0)𝛼)

⨂𝛼 𝑛

 .                                                  (6) 

Definition 2.4 ([23]): If 0 < 𝛼 ≤ 1, and 𝑓𝛼(𝑥𝛼),  𝑔𝛼(𝑥𝛼) are two 𝛼-fractional analytic functions defined on an interval 

containing 𝑥0 , 

                                             𝑓𝛼(𝑥𝛼) = ∑
𝑎𝑛

Γ(𝑛𝛼+1)
(𝑥 − 𝑥0)𝑛𝛼 = ∑

𝑎𝑛

𝑛!
(

1

Γ(𝛼+1)
(𝑥 − 𝑥0)𝛼)

⨂𝛼 𝑛
∞
𝑛=0

∞
𝑛=0  ,                                (7) 

                                            𝑔𝛼(𝑥𝛼) = ∑
𝑏𝑛

Γ(𝑛𝛼+1)
(𝑥 − 𝑥0)𝑛𝛼 = ∑

𝑏𝑛

𝑛!
(

1

Γ(𝛼+1)
(𝑥 − 𝑥0)𝛼)

⨂𝛼 𝑛

.∞
𝑛=0

∞
𝑛=0                                   (8) 

The compositions of 𝑓𝛼(𝑥𝛼) and 𝑔𝛼(𝑥𝛼) are defined by 

                                                        (𝑓𝛼 ∘ 𝑔𝛼)(𝑥𝛼) = 𝑓𝛼(𝑔𝛼(𝑥𝛼)) = ∑
𝑎𝑛

𝑛!
(𝑔𝛼(𝑥𝛼))

⨂𝛼 𝑛∞
𝑛=0 ,                                             (9) 

and 

                                                        (𝑔𝛼 ∘ 𝑓𝛼)(𝑥𝛼) = 𝑔𝛼(𝑓𝛼(𝑥𝛼)) = ∑
𝑏𝑛

𝑛!
(𝑓𝛼(𝑥𝛼))

⨂𝛼 𝑛∞
𝑛=0 .                                             (10) 

Definition 2.5 ([24]): If 0 < 𝛼 ≤ 1, and 𝑓𝛼(𝑥𝛼),  𝑔𝛼(𝑥𝛼) are two 𝛼-fractional analytic functions defined on an interval 

containing 𝑥0 , 

                                             𝑓𝛼(𝑥𝛼) = ∑
𝑎𝑛

Γ(𝑛𝛼+1)
(𝑥 − 𝑥0)𝑛𝛼 = ∑

𝑎𝑛

𝑛!
(

1

Γ(𝛼+1)
(𝑥 − 𝑥0)𝛼)

⨂𝛼 𝑛
∞
𝑛=0

∞
𝑛=0  ,                               (11) 

                                            𝑔𝛼(𝑥𝛼) = ∑
𝑏𝑛

Γ(𝑛𝛼+1)
(𝑥 − 𝑥0)𝑛𝛼 = ∑

𝑏𝑛

𝑛!
(

1

Γ(𝛼+1)
(𝑥 − 𝑥0)𝛼)

⨂𝛼 𝑛

.∞
𝑛=0

∞
𝑛=0                                 (12) 

The compositions of 𝑓𝛼(𝑥𝛼) and 𝑔𝛼(𝑥𝛼) are defined by 

                                                        (𝑓𝛼 ∘ 𝑔𝛼)(𝑥𝛼) = 𝑓𝛼(𝑔𝛼(𝑥𝛼)) = ∑
𝑎𝑛

𝑛!
(𝑔𝛼(𝑥𝛼))

⨂𝛼 𝑛∞
𝑛=0 ,                                            (13) 

and 

                                                        (𝑔𝛼 ∘ 𝑓𝛼)(𝑥𝛼) = 𝑔𝛼(𝑓𝛼(𝑥𝛼)) = ∑
𝑏𝑛

𝑛!
(𝑓𝛼(𝑥𝛼))

⨂𝛼 𝑛∞
𝑛=0 .                                            (14) 
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Definition 2.6 ([25]): If 0 < 𝛼 ≤ 1, then the 𝛼-fractional exponential function is defined by  

                                                                        𝐸𝛼(𝑥𝛼) = ∑
𝑥𝑛𝛼

Γ(𝑛𝛼+1)
= ∑

1

𝑛!
(

1

Γ(𝛼+1)
𝑥𝛼)

⨂𝛼 𝑛
∞
𝑛=0

∞
𝑛=0  ,                                     (15) 

Notation 2.7: If 𝑟 is a real number and 𝑛 is a positive integer. Define (𝑟)𝑛 = 𝑟(𝑟 − 1) ⋯ (𝑟 − 𝑛 + 1), and (𝑟)0 = 1. 

III.   MAIN RESULTS 

In this section, we find a special fractional integral by using some methods. At first, a lemma is needed. 

Lemma 3.1: Assume that 0 < 𝛼 ≤ 1,  and 𝑛 is a non-negative integer. Then  

                ( 𝐼0 𝑥
𝛼) [[

1

Γ(𝛼+1)
𝑥𝛼]

⨂𝛼 𝑛
[𝐿𝑛𝛼(𝑥𝛼)]⨂𝛼 𝑛] = [∑

(−1)𝑚(𝑛)𝑚

(𝑛+1)𝑚+1
[𝐿𝑛𝛼(𝑥𝛼)]⨂𝛼 (𝑛−𝑚)𝑛

𝑚=0 ] ⨂𝛼 [
1

Γ(𝛼+1)
𝑥𝛼]

⨂𝛼 (𝑛+1)

.         (16)    

Proof  Let  
1

Γ(𝛼+1)
𝑥𝛼 = 𝐸𝛼(𝑡𝛼), then 

1

Γ(𝛼+1)
𝑡𝛼 = 𝐿𝑛𝛼(𝑥𝛼), and hence 

                                        ( 𝐼0 𝑥
𝛼) [[

1

Γ(𝛼+1)
𝑥𝛼]

⨂𝛼 𝑛
[𝐿𝑛𝛼(𝑥𝛼)]⨂𝛼 𝑛] 

                                   = ( 𝐼0 𝑥
𝛼) [[

1

Γ(𝛼+1)
𝑥𝛼]

⨂𝛼 𝑛
[𝐿𝑛𝛼(𝑥𝛼)]⨂𝛼 𝑛⨂𝛼 ( 𝐷0 𝑥

𝛼) [
1

Γ(𝛼+1)
𝑥𝛼]]  

                                   = ( 𝐼0 𝑡
𝛼) [[𝐸𝛼(𝑡𝛼)]⨂𝛼 𝑛 [

1

Γ(𝛼+1)
𝑡𝛼]

⨂𝛼 𝑛

⨂𝛼 𝐸𝛼(𝑡𝛼)]  

                                   = ( 𝐼0 𝑡
𝛼) [[

1

Γ(𝛼+1)
𝑡𝛼]

⨂𝛼 𝑛

⨂𝛼 [𝐸𝛼(𝑡𝛼)]⨂𝛼 (𝑛+1)]  

                                   = ( 𝐼0 𝑡
𝛼) [[

1

Γ(𝛼+1)
𝑡𝛼]

⨂𝛼 𝑛

⨂𝛼 𝐸𝛼((𝑛 + 1)𝑡𝛼)]  

                                   = [∑
(−1)𝑚(𝑛)𝑚

(𝑛+1)𝑚+1 [
1

Γ(𝛼+1)
𝑡𝛼]

⨂𝛼 (𝑛−𝑚)
𝑛
𝑚=0 ] ⨂𝛼 𝐸𝛼((𝑛 + 1)𝑡𝛼)  

                                   = [∑
(−1)𝑚(𝑛)𝑚

(𝑛+1)𝑚+1 [
1

Γ(𝛼+1)
𝑡𝛼]

⨂𝛼 (𝑛−𝑚)
𝑛
𝑚=0 ] ⨂𝛼 [𝐸𝛼(𝑡𝛼)]⨂𝛼 (𝑛+1)  

                                  = [∑
(−1)𝑚(𝑛)𝑚

(𝑛+1)𝑚+1
[𝐿𝑛𝛼(𝑥𝛼)]⨂𝛼 (𝑛−𝑚)𝑛

𝑚=0 ] ⨂𝛼 [
1

Γ(𝛼+1)
𝑥𝛼]

⨂𝛼 (𝑛+1)

.                       q.e.d. 

Theorem 3.2: If 0 < 𝛼 ≤ 1,  then  

            ( 𝐼0 𝑥
𝛼) [[(

1

Γ(𝛼+1)
𝑥𝛼)]

⨂𝛼 (
1

Γ(𝛼+1)
𝑥𝛼)

] = ∑
1

𝑛!
[∑

(−1)𝑚(𝑛)𝑚

(𝑛+1)𝑚+1
[𝐿𝑛𝛼(𝑥𝛼)]⨂𝛼 (𝑛−𝑚)𝑛

𝑚=0 ] ⨂𝛼 [
1

Γ(𝛼+1)
𝑥𝛼]

⨂𝛼 (𝑛+1)
∞
𝑛=0 .        (17) 

Proof                        ( 𝐼0 𝑥
𝛼) [[(

1

Γ(𝛼+1)
𝑥𝛼)]

⨂𝛼 (
1

Γ(𝛼+1)
𝑥𝛼)

] 

                               = ( 𝐼0 𝑥
𝛼) [𝐸𝛼 ((

1

Γ(𝛼+1)
𝑥𝛼) ⨂𝛼 𝐿𝑛𝛼(𝑥𝛼))]  

                               = ( 𝐼0 𝑥
𝛼) [∑

1

𝑛!
((

1

Γ(𝛼+1)
𝑥𝛼) ⨂𝛼 𝐿𝑛𝛼(𝑥𝛼))

⨂𝛼 𝑛

∞
𝑛=0 ]  

                               = ( 𝐼0 𝑥
𝛼) [∑

1

𝑛!
[

1

Γ(𝛼+1)
𝑥𝛼]

⨂𝛼 𝑛
[𝐿𝑛𝛼(𝑥𝛼)]⨂𝛼 𝑛∞

𝑛=0 ]  
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                              = ∑
1

𝑛!
( 𝐼0 𝑥

𝛼) [[
1

Γ(𝛼+1)
𝑥𝛼]

⨂𝛼 𝑛
[𝐿𝑛𝛼(𝑥𝛼)]⨂𝛼 𝑛]∞

𝑛=0   

                              = ∑
1

𝑛!
[∑

(−1)𝑚(𝑛)𝑚

(𝑛+1)𝑚+1
[𝐿𝑛𝛼(𝑥𝛼)]⨂𝛼 (𝑛−𝑚)𝑛

𝑚=0 ] ⨂𝛼 [
1

Γ(𝛼+1)
𝑥𝛼]

⨂𝛼 (𝑛+1)
∞
𝑛=0  .                  q.e.d. 

IV.   CONCLUSION 

In this paper, we use some methods to obtain a special fractional integral based on a new multiplication of fractional analytic 

functions. Moreover, our result is a generalization of classical calculus result. In the future, we will continue to use our 

methods to solve the problems in engineering mathematics and fractional differential equations. 
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